01 December 2019

Three Next Steps

Caltrain's exhaustive business plan effort has resulted in a long range service vision for how to grow the railroad to the year 2040, recently adopted by the board as official policy. This is the mountain we wish to climb. How do we climb it? One step at a time. In fact, with electrified service now unlikely to begin before 2023, there is extra time to plan and execute three next steps.

Step One: Extend Platforms

The biggest short-term constraint to growing Caltrain capacity is  limited platform length. The new EMUs will be 685 feet long when extended to eight cars, too long for many existing platforms. The existing platform lengths are shown in the graphic at right (source), with the required extensions to 700 feet highlighted in orange. The diagram shows the year of construction of each platform, proving that Caltrain is a champion of platform construction, having poured about five linear miles of new platforms over the last two decades. The amount missing is about 3500 linear feet, or a bit over two years' worth of average platform production. There are a couple of tight spots boxed in by grade crossings, most notably Burlingame (767 feet between pedestrian crossings), but most locations have plenty of space.

Longer platforms enable the operation of 7-car diesel express trains, each with about 950 seats. While diesel trains don't feature prominently in future plans, they can still fill an important interim role once they become freed up by the arrival of the EMU fleet. The diesels can easily handle longer trains. It may not look good to continue belching diesel fumes, but it gets the job done at far lower emissions per passenger-mile than by forcing unmet demand to drive instead.

At the recent going rate of 7 to 10 thousand dollars per linear foot of platform, including all capital project overheads, the entire job should cost in the range of $25 - $35 million. For perspective, that's a percent or two of the modernization budget. This project is within reach of Caltrain's existing resources and is now official policy under section (1).E.ii of the service vision. There is no plausible excuse for not undertaking it immediately, to finish by 2023 concurrently with the start of electrified revenue service.

Step Two: Add 8th Car to EMU Fleet

The EMU order currently stands at 19 seven-car trains. The seventh car was ordered in a recent exercise of an option on the original contract, at an average price of $4.7 million per car. Assuming 10% price escalation, another 19 cars to extend this fleet to 8 cars would cost about $100M. This is a large sum, but one that could be scraped together over the next year or so if some high-speed rail funding gets re-allocated to interconnected "book end" projects.

The eighth car represents a significant step up in capacity: since it has no traction equipment cabinets, bike spaces or bathrooms, it has room for a whopping 132 seats, bringing seated capacity per EMU from 667 to 799, a 20% increase. So, for an extra 5% of the modernization budget, you buy an extra 20% capacity. This should be undertaken as soon as possible.

From an emissions point of view, ordering the eighth car is far preferable to ordering additional 7-car EMU formations to displace the diesel fleet sooner. Growing the fleet before fully replacing it provides a short-term peak-hour capacity boost that will remove traffic from roads and alleviate congestion, easily offsetting the emissions of the small remaining diesel-hauled fleet. Going all-electric sooner sounds "green" if you look at Caltrain in isolation, but keeping some diesels in the short term is greener when considering the overall transportation system of which Caltrain is a part, which is what ultimately matters for the air we breathe. Seven-car diesels can be used exclusively in express service, where fewer stops and starts (which are dreadfully slow with diesel) pose less of a time penalty.

There is the small wrinkle of where to park these longer trains when they are not in service. CEMOF, the maintenance facility in San Jose, currently stores two trains end-to-end on four 1200-foot sidings where two longer trains (EMU-8 at 685 ft, or diesel+7 at 664 ft) won't fit. This means at least four trains will need to be stored somewhere else, presumably at San Francisco or San Jose, as was the practice before CEMOF was built. In a real pinch, trains can be stored during the off-peak in the controlled sidings south of Redwood Junction, with certain shoulder-of-peak trains originating and terminating at Redwood City to avoid long deadhead moves.

Step Three: Accelerate Planning for Level Boarding

Level boarding (discussed extensively on this blog) decreases trip times, improves punctuality, increases crew productivity per hour of labor, and increases the frequency of service that can be provided by a train fleet of a given size. While Caltrain's embrace of the concept has been hesitant, it is now policy under the same section (1).E.ii of the service vision adopted by the board. The next step is to get serious about planning how to actually do it, because it is a far more complicated problem than it first appears.

Caltrain staff have decided to forgo boarding using the high-level doors, and recently issued a change order to have the EMU fleet delivered with these doors replaced by plug panels. Level boarding will happen with European-style 550 mm platforms, which can't be a bad thing, although accessibility requirements are more difficult to meet in the United States. The trick is then how to get there, and how to end up with a level boarding solution that doesn't require crew assistance whenever a person of reduced mobility needs to board or alight, in the current inefficient fashion of Northeastern railroads.

The trains will require a boarding step arrangement that deploys to serve either 8-inch legacy platforms (using a drop step mechanism) or to close the gap to newly raised 550 mm platforms, during an extended transition period where some stations may have been modified before others. Due to a lack of foresight on Caltrain's part, this capability is not available on the new EMUs as procured. The EMUs will need to be retrofitted with new three-position step modules (presumably engineered by Stadler's step supplier, Bode / Schaltbau) roughly like this:

The primary engineering challenge is to meet the ADA horizontal gap requirement in Position 2, which is 3 inches maximum (in current law) and is planned to be reduced to 2 inches. The step mechanism must also deploy to the correct height without crew intervention.

The platforms will need to be raised by a bit less than 14 inches, preferably without demolishing and starting over. One intriguing way to do this cheaply and with minimal service disruption would be to re-use the existing platforms as a slab foundation, with drainage, electrical grounding and bonding, and utilities staying as they are. The platforms would first be fitted with prefabricated adjustable edge modules. An adjustable platform edge that can be jacked to the correct height at initial installation and periodically adjusted during maintenance (e.g. after track tamping) is an unavoidable requirement of meeting the demanding ADA gap specifications for unassisted level boarding.

View of a single six-foot-long 550-mm platform edge module installed on a legacy 8” platform
After suitable modifications to platform amenities, the remaining area of the platform would be raised using lightweight expanded polystyrene fill (Geofoam) and modular pavers. The pavers cover the temporary boarding step that is integral to each edge module, which is no longer needed. The resiliency of the resulting platform structure enables periodic adjustment of the platform edge jackscrews to maintain compliance with the ADA gap criteria.

The modular construction technique with edge modules and pavers lends itself to rapid “blitz” construction schedules, since no platform concrete curing is necessary. After each night's construction, the platform can be left in a usable state for the next day's service, avoiding the logistical complications of closing entire platforms during construction.

Regardless of the technical solution ultimately adopted, level boarding starts with a robust planning process to define the problem and consider all the engineering approaches. This planning process is not expensive, and it needs to be funded and staffed now that level boarding is policy.

State of Good Design

Railroad operating departments work hard to achieve and maintain what is known in industry lingo as a state of good repair (SOGR). If that's all that Caltrain is going to do in the next decade, electrification will fall flat, like a sort of MBTA with pantographs on top. We have a chance to move beyond the narrow commuter-rail SOGR mindset, striving for something far bigger: a state of good design. The three next steps described here are a small way to get started right now on the way to the visionary service improvements described in Caltrain's business plan.

25 September 2019

Risk and Opportunity in Redwood City

Lowe, a major real estate development firm, is preparing to redevelop Redwood City's Sequoia Station, an outdated strip mall adjacent to the Caltrain station, into a 12-acre mixed-use project with towers up to 17 stories tall.  If that is eye-opening to residents of Redwood City, consider that few people yet know that a greatly expanded Redwood City station is the keystone transfer node to enable the growth envisioned in Caltrain's business plan service vision. This new station will require slightly more land than the railroad already owns, and can only be located in Redwood City, the sweet spot that lies halfway between San Francisco and San Jose at the connection point to the Dumbarton rail corridor.

This creates a risk: if a commercial development project is allowed to proceed without respect to the future real estate needs of the railroad, then Caltrain will be constricted and unable to build the optimal infrastructure to support future growth.

Additional Land Needed For Caltrain

Caltrain and Samtrans have extensive land holdings at the Redwood City transit center. Still, just a bit more is needed to build a high-functioning piece of infrastructure, and be could traded for other parcels. Click to expand the map:

Land needed for future expanded station in Redwood City (shaded green)
Design Principles

The absolute worst way to build it.
Existence of this city rendering is
reason enough to be concerned.
To ensure that the Sequoia Station project becomes an exemplar transit-oriented development, rather than relegating Caltrain to the role of development-oriented transit, the rail agency and the developer should agree on some broad design principles.
  • Think Big. Redwood City is one of the few stops on the peninsula rail corridor not surrounded by a sea of low-density single-family housing. Intensive land use and transportation must fit together to achieve a dynamic yet sustainable low-carbon future.
     
  • Form follows function. No amount of architectural flourish or amenity can make up for a poor station design. Optimize for convenient access, easy transfers between trains and buses, short walks, direct and intuitive routes.
     
  • Put the station at the center of the action, right over Broadway. Don't shove it to the north, out of the way of the development. The city rendering at right shows precisely what NOT to do.
     
  • Configure the station as two island platforms to facilitate cross-platform transfers, without time-consuming vertical circulation or platform changes. The Caltrain business plan's staff-recommended service vision relies entirely on these Redwood City cross-platform transfers; every single train that pulls into Redwood City will make a timed transfer to another same-direction train docked at the opposite edge of the same platform. Denoting express tracks as 'F' for Fast and local tracks as 'S' for Slow, the optimal layout is FSSF with two islands, resulting in F-platform-SS-platform-F. Again, the city rendering shows precisely what NOT to do: passengers would not only have to change platforms, but also cross the tracks at grade.
     
  • Elevate the train station to reconnect the street grid and make the railroad permeable to pedestrians, bikes, and other traffic. A busy four-track station is fundamentally incompatible with at-grade railroad crossings, and the only reasonable way to grade separate at this location is by elevating the entire station. Obstacles to pedestrian circulation such as the Jefferson Avenue underpass would be removed. Once again, the at-grade city rendering shows what NOT to do.
     
  • Use four-track approaches from the north and the south. Cross-platform transfers are most efficient if trains do not have to arrive and depart sequentially using the same track, which adds about 3 minutes of delay. The best transfer is one where the two same-direction trains can arrive and depart simultaneously on their own separate tracks. Temporal separation is efficiently established by having the local train stop one station away from Redwood City (southbound at San Carlos or northbound at a new Fair Oaks station at Fifth Avenue) at each end of a new four-track segment that will ultimately measure four miles. In this arrangement, the express trains naturally gain on the local trains without a single passenger being delayed at Redwood City.
     
  • Include turn-back tracks. Preserve room in the right of way north and south of the station for turn back pocket sidings, between the central slow tracks. Dumbarton rail corridor trains may not necessarily "interline" or continue on the peninsula rail corridor, so it's important to give them a convenient place to transfer and turn around without fouling other train traffic on the express tracks (hence FSSF arrangement). Same thing for a possible San Mateo local, which could serve the more densely spaced stops north of Redwood City.
     
  • Don't be constrained by discrete city blocks. It could make sense to build structures or connect them over and across the tracks, more tightly knitting the station complex into surrounding mixed-use neighborhoods. This has some surmountable safety and liability implications, but buildings on top of busy stations are a common feature of successful cities around the world.
     
  • Plan for long 400-meter platforms, not Caltrain's standard 700-foot platform length (again as seen in the city rendering of what NOT to do). While statewide high-speed rail plans currently do not include a stop in Redwood City, it is becoming enough of a destination and a regional transportation node that it makes sense to build a station large enough to future-proof it for service by long high-speed trains, regardless of what the California High-Speed Rail Authority might have to say about it.
     
  • Think ahead about construction sequencing. Redwood City should be grade separated in one project from Whipple to Route 84, including the elevated station, taking advantage of Caltrain's land holdings to minimize the use of temporary tracks. A shoo-fly track would have to be built on Pennsylvania Avenue (within the railroad right of way) to make room for construction of the western two-track viaduct. Trains would begin using the elevated station while a second eastern two-track viaduct is constructed. Pennsylvania Avenue could re-open later, under the new four-track viaduct. Construction sequencing may drive how much extra land is needed for the railroad, so it's important to think it through up front.
If these design principles are respected, the re-development of Sequoia Station will present not a risk but an amazing opportunity to enhance Redwood City by realizing its full potential as the fulcrum of the Caltrain corridor and of a new regional express network reaching across the Dumbarton bridge and beyond.

01 September 2019

Electrification Delayed

Caltrain's electrification project is showing ominous signs of falling badly behind schedule. There are at least five bearish indicators:

Slippery milestone
Slipping Milestones. One key milestone reported in the project's monthly progress reports is known as "Electrification Substantial Completion." From the December 2018 report to the July 2019 report (over a span of 7 months), the milestone has slipped from 6/23/2021 to 12/31/2021 (a bit over 6 months). When a major milestone slips almost day for day, you know the project has gone sideways. The latest PMOC report from the FTA shows that the contractor's date for this key milestone has slipped well into 2022, over a thousand days late relative to the milestone date promised when the contract was signed.

Severely under spend plan
Significant Under-Spending. The amount of money spent to date is about $640 million less than planned at the start of the project. If the value of the work accomplished is commensurate with the amount spent, then the project is 1.5 years behind schedule. However, there are strong indications of inefficiencies (such as "differing site conditions" disrupting foundation installation) and unplanned scope (such as the new grade crossing constant warning time solution) that make it exceedingly likely that the value earned so far is less than had been planned for the amount spent. From an earned value perspective, the CPI is likely under 1 (over budget) and the SPI below 0.6 (further behind schedule than the spend curve might imply).

The little engine that couldn't
Foundation Chaos. As is plainly obvious to anyone riding the train, foundation installation is not a spatially or temporally orderly process. Digging into the ground reveals old utilities, and often reveals the recently-installed CBOSS fiber optic cables, evidently placed by the contractor where it was easiest (right where foundations need to go) with the as-built configuration either incorrectly documented or not at all. This is another CBOSS issue that could end up in court. Conflict with these cables does not bode well for PTC testing or activation, or for the cost of foundation and pole redesign and relocation. Recent indicators show a slight uptick of foundation productivity, but it still lags well below the monthly average of 174 that must now be sustained every month to complete on time. The all-time record is 122, and indications are that August 2019 totals have slid back considerably below trend.

Missing tasks are delayed and
on the critical path
Missing Schedule Tasks. By all accounts, the long pole in the tent (the critical path of the Balfour Beatty schedule) is the design, installation and testing of the signal system modifications, including the new grade crossing warning system. However, such a task is nowhere to be found in the schedule published in Appendix C of the monthly report, which obscures any insight into the true status of the project. Having recently set $150 million on fire with CBOSS, Caltrain is understandably skittish about revealing further unforeseen costs and delays associated with signalling, but it seems inexcusable at this juncture that the public master schedule would show only "OCS," "Traction Power," and "Segment Testing" tasks for the electrification contract, when all the action is in the missing task "Signal System Modifications," which is very much on the critical path in Caltrain's internal schedule and the contractor's schedule.

Proliferation of Schedules. There is apparently no agreement between Caltrain and their contractor on what the real program schedule is. The public schedule in the monthly report is served with a cautionary statement that Balfour Beatty is reporting a significant delay, but the completion milestone is still optimistically set to 12/31/2021. When you end up with several schedules, there is effectively no longer a project schedule. It's anyone's guess when the project will be done, and chances are increasing rapidly that it won't be in 2022, despite Caltrain's increasingly desperate insistence that everything is fine.

Right now would be a good time to come clean about what's really going on. Total transparency is the only saving grace that can spare Caltrain from accusations of project management incompetence.

28 July 2019

Emergency Exit Fail

Caltrain's new EMU train cars have an unusual configuration with two sets of doors. The lower level doors will be used at existing Caltrain stations, while the intermediate level doors (above the wheels at the ends of each car) are intended to be used at an undetermined date in the 2030s once these trains begin sharing stations with California high-speed rail, which will use high-floor trains and high platforms with boarding at about 50" above the rail. The California High-Speed Rail Authority, which Caltrain cryptically refers to as "external stakeholders," required this design feature as a condition of funding Caltrain's modernization to the tune of $750M, to maintain the option of sharing platforms at future HSR stations in San Francisco, Millbrae and San Jose.

The Original Plan

To maximize the short-term seating capacity of the new trains until the 2030s, Caltrain specified that the intermediate level should have temporary flip-up seats installed in front of the unused doors, five per door vestibule, with the seating blocking off the doors like this:
Configuration of intermediate level in A, B, C, E, and G cars
Because EMU cars are filled with electrical cabinets (labeled with yellow lightning bolts), the seating capacity of the train is reduced compared to a conventional train. This is the price you pay for not having a locomotive; all the bits that make the train go still need to find a place, which makes for a challenging packaging problem in a bi-level train. The reduced seating capacity of the train has been controversial and makes these temporary seats quite important. For each 7-car train, there are 70 of these intermediate level flip-up seats that make up a non-trivial 10% of the overall seating capacity of 667.

At some undetermined future date when the intermediate doors would be needed for compatibility with high platforms, the blue flip-up seating modules would be removed from the intermediate level.

A Regulatory Conundrum

In the design of any new train, federal safety regulations require that any passenger seating compartment be fitted with at least two emergency exit windows (for passenger egress) and two rescue access windows (for first responder ingress). The intermediate level counts as a passenger compartment because these flip-up seats are located within it. However, the intermediate level does not have what regulations consider to be a window; the only opening to the outside is through the doors. This set up a conflict with safety regulations.

In late 2017, Caltrain petitioned the Federal Railroad Administration for a waiver (docket FRA-2018-0003) by arguing that the emergency release feature of the doors would provide an equivalent level of safety, despite not meeting the letter of the regulation, allowing emergency access by climbing over the seat backs.

In June 2018, the FRA denied Caltrain's request because the flip-up seating installed longitudinally such that it blocks the doors could impede egress and access and therefore did not meet the intent of the regulation. The FRA stated that "the absence of need for these intermediate level doors to support current revenue boarding and alighting requirements does not negate the necessity for an unobstructed path in the event of an emergency." Curiously, this unobstructed path requirement applies only to doors, not to windows!

Implicitly, Solution A is to remove all seating from the intermediate level of the affected cars, which effectively sidesteps the emergency window requirement. But given that seating in Caltrain's EMUs is already quite limited, this solution seems like a non-starter as it would reduce seating capacity of a 7-car train by 9% from 667 seats to just 617 seats.
Solution A: not a passenger seating compartment
The FRA helpfully suggested some other possibilities.

Solution B: equip the intermediate level doors with a regulation-size emergency window of minimum dimensions 26" wide by 24" high. Unfortunately, that is too large for the dual-leaf design of the train doors; in other words, the window in each door leaf is too narrow to function as an emergency window.
Solution B: the minimum clear opening is too big for dual-leaf doors
Solution C: replace the intermediate level doors with a plug panel (essentially, a structural wall panel that does not function as a door) fitted with a regulation-size emergency window of minimum dimensions 26" wide by 24" high, until such time as the door-blocking seating is removed, the panel is removed, and the doors and platform bridge plates are re-installed.

Solution C: doors replaced by plug panels
Caltrain is now in the process of pursuing Solution C, plug panels. This change order is expected to cost about $4 million total up front, about $30000 per car, or $7000 per door. When intermediate-level doors are required a decade or more from now, a net sum of approximately another $10 million ($14 million future installation cost to be set aside, minus $4 million of door maintenance savings) would be needed to retrofit them. That is a LOT of money for a change that fundamentally reduces and complicates compatibility with HSR stations and platforms.

Other Solutions

There are other solutions that strike a better balance of functionality and simplicity without a seven-figure cost impact.

Solution D: short of removing all the seating from the intermediate level vestibule, the regulations require only one emergency window (instead of two) if there are four or fewer seats in the compartment. Removing seats from one side only and applying for a new waiver to allow unobstructed use of one of the doors in lieu of a single emergency window could work, addressing the FRA's stated concern with door obstruction. This would reduce seating capacity of a 7-car train by just 22 seats or 3% (5 seats lost in cars A and B, and 4 seats lost in cars C, E and G).
Solution D: reduced seating with unobstructed emergency access
Solution E: reconfigure the mounting bracket for the flip-up seating so that seats flip up and out of the way of the doors when not used, allowing the unimpeded use of both doors in lieu of emergency windows. This solution requires applying for a new waiver to allow the use of doors in lieu of emergency windows, but also addresses the FRA's stated concern with door obstruction. Placing the flip up seats in this manner would reduce the clear width of the door opening by a couple of inches on each side, from 51" to about 47", with no reduction to seating capacity.
Solution E: change flip-up seating orientation to provide unobstructed door access
(flip-up seats are shown in use; they fold flush against wall when not occupied)
Solution E would require no modifications whatsoever when the intermediate level doors are needed in the future, and could be implemented at all doors throughout the train including the lower level, adding seating capacity. Seats placed in doorways may sound like a bad idea, but in a crowded train, social signaling fairly quickly communicates to occupants of these seats that it's time to stand up and make way. This is the French "strapontin" seating in common use on some of the busiest rail lines in Paris:

Flip-up seats in a doorway of a brand new Bombardier EMU on Paris RER line D.
(foreground at left) credit: Wikipedia / KiHa 52
Indeed, the photo above, taken inside the same Bombardier EMU often vaunted in front of the Caltrain board by a certain member of the public as having so much more seating than Stadler's EMU, shows one of the secrets of achieving very high seating densities: flip-up seating in all doorways. The other three secrets are five-abreast seating, not having as much space dedicated to bikes, and lower acceleration performance that requires fewer electrical cabinets, leaving more space for seats. After adjusting for these four factors, it turns out that the Bombardier EMU provides no higher seating density than the Stadler EMU.

Ultimately, it is entirely possible that Caltrain simply does not wish to interface with high-speed rail in any station as a matter of policy, because it would require sharing and collaborating with another agency, and solving a somewhat complicated ADA compliance problem. Which agency would voluntarily bring that upon itself? Caltrain already took the HSR money, and installing plugs will "erase" the clunky and unpalatable concession they made in the name of compatibility, with the further bonus of not requiring another run at the FRA for a new waiver. The complicated ADA compliance issues associated with interior lifts are kicked as far down the road as possible!

No matter how you look at it, Caltrain's chosen approach is a ~$15 million mistake that reduces and complicates compatibility with HSR stations and platforms. There are cheaper, simpler and easier ways to achieve compliance with emergency window regulations. It's not too late to change course.

05 May 2019

Thoughts on Grade Separations

The emerging Caltrain business plan is broaching the issue of grade separations, a decadal process that has been underway, well, for decades. We're already 63% of the way there today, with another dozen new grade separation projects in various stages of planning or construction. Achieving a reasonable level of grade separation for the peninsula corridor is estimated to cost $8.5 - 11.1 billion, a shockingly large sum that we'll just round to $10 billion. As we try to grasp the enormity of that figure, here are some contrarian thoughts:

1) Don't spend train money on car projects. The benefit of grade separations accrues primarily to automobile travel, with the elimination of gate down time. An intensive grade separation program can eventually unlock additional operating slots for more trains and eliminate the occasional incident, yielding benefits to train riders. Some grade separations are necessary, such as when expanding to four tracks. In the short term, however, the greatest benefit is the removal of an inconvenience to drivers, which in our car-centric society is held as a worthy goal seemingly regardless of cost. Rail dollars are a lot scarcer than road dollars, especially in this era of federal disengagement, so the last project we should spend them on is a project that facilitates car travel with little improvement for train riders. Rail funding should be used to make real and measurable improvements to train service, a standard by which most grade separations rate poorly. So you still want a grade separation? Build it with road funding.

Anticipated gate down times,
under various scenarios in the
Caltrain business plan
2) Quit whining about gate down time. Caltrain put together a nice summary of gate down time, the number of minutes per hour that grade crossing gates block traffic during rush hours. Today the average is 11 minutes, and under future growth scenarios it could increase to 17 - 25 minutes, with a few crossings faring worse than average. If that sounds intolerable, think about a typical roadway intersection with a traffic light. If both roads are equally important, the "gate down time" of a traffic light is 30 minutes. If one road is more important, the lesser road (for example, Ravenswood Ave where it meets El Camino Real in Menlo Park) sees "gate down time" well in excess of 30 minutes, let's say 40 minutes per hour. Nobody is clamoring to grade separate the Ravenswood / El Camino road intersection. There's an obvious double standard here, and the guidelines for what qualifies as unacceptable delay should be set the same way as they are for the grade separation of a road intersection. Gate down time should only rarely, if ever, be the reason to build a new grade separation.

3) There are few economies of scale in grade separation. Doing them all as a package does not save money. The process we have, where local jurisdictions often exert tight control over every aspect of design and construction, does not lend itself to a one-size-fits-all approach. Each grade separation is different. Grade separation designs do not depend on each other in the majority of cases where they are widely spaced. While a corridor-wide strategy is important to have, the execution of that strategy and the securing of funding is inherently a city and county issue. If we are going to have a corridor-wide funding approach, it must go hand-in-hand with taking away local control. Jurisdictions that insist on local control should be left to figure out the funding on their own. Palo Alto, where interminable and futile discussions of tunnels continue to this day, should not be allowed to control the design process if their project is paid for through a corridor-wide funding measure.

4) If $10 billion is an okay expense, then there are far better ways to spend it. Especially with rail money at stake, there are much better ways to spend $10 billion than by building a lot of grade separations for cars that produce zero improvement to train service. There are a lot of good investments that should be made to improve the amount and speed of train service:
  • Extend all platforms to 8-car length. If you put all the platforms that Caltrain ever built in the last 20 years end to end, they would stretch about 5 miles long. This is not an expensive project; it can be done for about $0.05 billion. It should already be underway, but inexplicably isn't.
  • Convert the entire train fleet to 8-car EMUs, starting by exercising the rest of the existing Stadler contract option of another 59 cars, increasing the fleet to 24 trains. The diesels are retired from the peninsula, which is a condition for starting any level boarding projects. This costs about $0.4 billion.
  • Convert the entire system to level boarding to speed trips and improve punctuality. Depending on how this is done (high platforms or low platforms, or some combination thereof) and over how long a period of construction, this would cost about $0.5 - 1 billion.
  • Build a new EMU maintenance and storage facility near Blossom Hill (San Jose) and extend frequent electrified service through all of San Jose. Including any extortion by UPRR, the owner of the tracks, this ought to be feasible for less than $1 billion.
  • Build a new transit center in Redwood City to enable cross-platform transfers between locals and expresses. Call it $0.5 billion, and throw in the downtown grade separations for another $0.5 billion to allow four tracks.
  • Expand the EMU fleet to enable 8 train per hour peak service. Expanding the fleet to 32 trains would require another 64 EMU cars, for about $0.5 billion.
  • Extend the platforms at highly patronized express stops to 12 cars in length, and extend expresses to 12 cars. This would require extending about half the fleet by 4 cars, or another 64 EMU cars. Including platforms this might cost about $0.8 billion.
This isn't an exhaustive list, but unlike grade separations, all of these projects have immediate and measurable positive effects on the quantity and quality of service provided to riders. This list achieves most of Caltrain's "moderate growth" scenario but without HSR. The tally for all of these projects is still less than $5 billion, so if $10 billion for grade separations sounds at all palatable, this list ought to be a no-brainer.

Grade separations are nice, but their cost and benefit should be weighed very carefully on a case-by-case basis. The cost should be borne by who benefits. The business plan process will hopefully create the framework to have the difficult conversations about what not to pay for with rail funding. Grade separations should be built with highway funding unless there is a clear and measurable benefit to rail service.

24 April 2019

Foundation Progress Tracker

One way to measure the progress of a large and complex construction program like the Peninsula Corridor Electrification Program is to count how many foundations have been completed. This is a revealing metric, since foundation construction is currently the top risk on the program due to surprises when digging holes along the right of way. It's also a metric that is readily measurable and reported monthly.

In round numbers, the electrification project encompasses ~2500 poles and ~3100 concrete foundations. The number of foundations is greater than the number of poles because there are foundations for guy wires and sometimes multiple foundations for portal poles.

The progress chart below will be updated monthly.


At the December 2018 meeting of the Caltrain board of directors, the program manager stated (starting at 01:03:00 in video) that he needed to maintain a pace of 156 pole foundations per month (six per night) to meet the schedule milestone of "electrification substantial completion," which was then set for June 2021. You can see how things went since then.

02 April 2019

Eyes on Bikes

The configuration of the new EMU bike cars is controversial because seating and bikes are not currently planned to be located together on the same level, which prevents riders from keeping an eye on their bikes and increases the risk of theft. A workshop is planned to resolve this eyes-on-bikes controversy.

Bike Capacity Shenanigans

Clouding the issue of eyes-on-bikes theft deterrence is another hot-button issue with the bikes-on-board crowd, bike capacity. In 2015, under sustained pressure from bike advocates, the Caltrain board of directors made the unusual decision to override the staff-recommended seat:bike ratio of 9:1, imposing instead a ratio of 8:1 to be written into the Request for Proposals (see meeting minutes, pp 6-15.) The initial six-car EMU order was procured under this requirement, resulting in a configuration with 567 seats and 72 bike spaces. Fast forward to 2018, and an option order placed to stretch the EMU fleet to seven cars did not include additional bike space. The result is a train configuration with 667 seats and the same 72 bike spaces, resulting in a ratio of 9.3:1. While the 2015 board directive concerned only the wording of the RFP and only implicitly established a bike capacity policy, bike advocates are upset about a perceived bait-and-switch, despite the increase in peak-hour frequency from five to six trains per hour per direction.

To have any chance of resolving these two issues, the bike community needs to attack them separately. Tying the reconfiguration of the bike cars for better theft deterrence to a bike capacity increase is a losing proposition, given the increased resistance to more bikes-on-board from staff and the new board. With increasing crowding, it may make less sense to allow passengers to bring bikes on the train.

For now, let's set aside more bikes and deal with theft deterrence first.

Dimensions and Rules
  1. All bike spaces will be located on the lower deck of the bi-level EMU cars.
  2. All cars have an interior width of 2.80 m and must have an ADA-compliant 32" aisle.
  3. The D and F cars (longer unpowered cars) have an available lower deck length of 10.03 m.
  4. The C and G cars (shorter powered cars) have an available lower deck length of 8.37 m.
  5. Eyes on bikes: where possible, seating shall face towards the bikes.
  6. Bike pens (capacity 4 bikes) are sized 2 m long by ~1 m wide.
  7. Double bike pens (capacity 8 bikes, without a divider) are sized 3.85 m long by ~1 m wide. They provide the same interior room compared to two single pens placed end to end.
  8. Bike pens, or at least bike partitions, are required for crashworthiness, if seats are going to be facing towards the bikes for "eyes on bikes." This prevents a pile of bikes from ending up in someone's lap in the event of an emergency stop or collision.
  9. Same-direction seat pitch is 32.5" or 82.5 cm.
  10. Facing seats with a table require 66.9" or 170 cm (note the table uses less than 2 extra inches!)
  11. Back-to-back seats require an additional 6" or 15 cm of clearance to accommodate the slight recline of the two seat backs.
  12. Two wheelchair spaces must be provided in each car.
  13. One wheelchair space may overlap with a bike pen (dual purpose space, priority to the wheelchair user) per precedent in the existing layout.
  14. It is preferable to minimize the number of different car configurations.
With these rules in place, one can go about re-configuring the bike cars.

One key consideration is that it is not possible to re-distribute 72 bike spaces between three cars, while also providing 72 seats that are in view of the bikes. If one desires enough seating capacity on the lower deck to allow 100% eyes-on-bikes, the only way to proceed is to have four bike cars, including the recently-ordered 7th car. Like this:
Suggested EMU lower deck layout to achieve 100% eyes-on-bikes.
Bonus: an extra two seats. (click to enlarge)
The bike car reconfiguration represents an opportunity for Caltrain. On one hand, it allows Caltrain to claim they are responsive to stakeholder input, and on the other hand, it gives a legitimate pretext to add a bit of delay to the EMU order, thus opening up some breathing room in the program schedule for electrification construction, which is falling badly behind.

Towards a Compromise Bike Ratio

It has always been the intent, as funding allows, to extend the trains to 8 cars. Should the bike ratio continue to be controversial, the eighth car could be configured exactly as the D and F cars in the diagram above, providing another 20 bike spaces for a total of 92 per train. The seating capacity of the entire train would be 778, yielding a compromise ratio of 8.5:1, halfway between the preference of Caltrain staff (9:1) and the preference of bike advocates (8:1). The best compromise is one with which everybody is equally unhappy.

09 March 2019

1 Bike Less = 1 Car Less

A packed bike car
(photo: Steve Wilhelm)
Bikes Onboard, an advocacy group for Caltrain's globally-unique system of carrying thousands of bicycles on board crowded rush hour trains, is lobbying for more bicycle storage space on Caltrain's new EMUs. The argument goes that creating more space for bikes encourages people to leave their car at home, resulting in a fast, convenient, low-carbon commute. They even have a tidy equation for it:
1 bike less = 1 car more
There's a slight problem with this equation. Storage for one bike takes up about the same space as one seat, so each biker occupies two spaces on board the train. Everything works out when there is spare capacity, but when a train gets full, the equation starts to break down.

The bikers argue that no regular passenger ever gets "bumped" off the train the way bikers do when the bike car is full, so the worst outcome of bringing a bike on a crowded rush hour train is that somebody else will need to stand rather than sit. How bad can that be?

Standing is uncomfortable, which invites the invisible hand of supply and demand. When the train ride at rush hour becomes uncomfortably crowded, passengers will sometimes stop riding. The level of peak crowding is self-regulating; there is an equilibrium level of unpleasantness where each new rider is balanced by another fed-up rider who quits due to crowding. This invisible hand works without a single passenger ever being "bumped" at boarding; the "bumping" in this case is happening at home when a person is deciding whether or not to ride the train that day. Unlike bicycle "bumps," you can't measure how much crowding discourages riders, and you can't count the number of people who won't ride out of concern for not being able to sit. That doesn't mean it's not happening.

In this case, a biker who no longer takes the train (and drives instead, let's say) will free up two spaces on the train (for former drivers, let's say). The correct equation for standing-room-only conditions is then:
1 bike less = 1 car less
This is why Caltrain should limit how much bike space is available on board the trains during rush hours. Any additional train cars ordered to increase the passenger carrying capacity of the new EMU fleet should be packed with seats and not a single additional bike space beyond the ones already provided. Peak hour bike commutes should be encouraged by improving station bike parking facilities, as is done in other countries where bike mode share is far higher than the Bay Area.

03 March 2019

Build a Dumbarton Rail Tunnel

The Dumbarton water tunnel TBM,
being assembled for the start of its
five-mile drive under the Bay in 2011.
Boring a new tunnel under the Dumbarton corridor, through muddy soils right under a sensitive national wildlife refuge, seems like an impossibly difficult, risky and expensive undertaking in this day and age. But here's a little-known fact: it's already been done.

From 2011 to 2013, a 15-foot diameter tunnel boring machine (TBM) quietly bored a new five-mile tunnel under the Bay from Menlo Park to Newark. The $288 million project, the first tunnel ever bored under San Francisco Bay, is part of the Hetch Hetchy Water System and was built to contain a 9-foot diameter drinking water supply pipe that feeds San Francisco and the peninsula. The TBM that bored the tunnel was an EPB (Earth Pressure Balance) machine and advanced so quickly that it had to wait underground at the far end of its drive, while an access shaft was prepared so the machinery could be retrieved. There were few geotechnical surprises along the way, of the sort that can sometimes blow out tunneling budgets and schedules. The geological layers of clay, gravel and rock under the Bay along the Dumbarton corridor are now better known than they have ever been, and any "geotechnical risk" is effectively retired after the actual boring of an actual tunnel.

Of course, a rail tunnel would be larger and cost far more than the $288 million water tunnel. To safely carry train traffic at speeds of 125 to 150 mph, two parallel tunnel bores about 30 feet (10 meters) in diameter would be needed, connected by cross-passages about every 1000 feet and with a handful of ventilation and emergency evacuation shafts to the surface.

How Much Would a Dumbarton Rail Tunnel Cost?

The costing of bored rail tunnels is reasonably predictable, with models having been developed for example by the High Speed 2 project in the United Kingdom. The HS2 tunnel cost model can be applied to estimate the known cost of the Dumbarton water tunnel, as a sanity check. The model uses 2011 British pounds, which we convert to dollars using the exchange rate of $1.57 in 2011. The length of the water tunnel is about 8000 m, and it took about 100 weeks to drive and clear out (100 m/week drive and 400 m/week clear-out). Tunnel construction cost is scaled by bore diameter as indicated by section 4.2 chart G.1; the single-bore water tunnel has 23% of the perimeter of a twin-bore 9.6 m tunnel considered in the HS2 document. Disposal cost is scaled by bore area; the single-bore water tunnel has 11% of the area of a twin-bore 9.6 m tunnel. Note the water tunnel does not require portal or ventilation / evacuation facilities.

ItemDescriptionQuantityUnitRateCost ($M)
Purchase of TBMEPB Boring Machine1ea.$28M28
Support CostsFixed Costs (EPB Machine)1ea.$55M55

Time-related costs100weeks$1.7M/week170
Tunnel ConstructionEPB Tunnel (single bore)
8000m$8000/m64
Disposal of MaterialOff-site disposal8000m$800/m6.4
TOTAL



323

The HS2 model seems to predict the direct construction cost of the existing Dumbarton water tunnel reasonably accurately, landing within ~12% of its actual cost. Most of that difference can be ascribed to the much smaller boring machine, which the HS2 model cannot account for; the Dumbarton TBM cost about $10M.

Scaling It up for Trains

The unit costs from the HS2 model can be used directly to scale up to a Dumbarton twin-bore tunnel ready for high-speed electric trains. This tunnel will be a bit longer than the water tunnel, since unlike water, trains can't just climb vertically into and out of the tunnel. Assuming 2025 dollars, which are worth about 20% less due to inflation, you get the following direct construction costs:

ItemDescriptionQuantityUnitRateCost ($M)
Purchase of TBMEPB Boring Machine2ea.$35M70
Support CostsFixed Costs (EPB Machine)1ea.$69M69

Time-related costs120weeks$2.1M/week252
Tunnel ConstructionEPB Tunnel (twin bore)
10000m$43000/m430
Disposal of MaterialOff-site disposal10000m$9000/m90
Tunnel Portals
2ea.$39M78
Tunnel ShaftsVentilation / Emergency3ea.$39M117
SystemsElectrical / Mechanical10000m$8000/m80
TOTAL



1186

The basic construction bill comes to $1.2 billion in year-of-expenditure dollars for a state-of-the-art twin-bore electric rail tunnel built in the middle of the next decade. This figure is then burdened roughly as follows:
  • 3% environmental mitigation
  • 25% contingency
  • 6% engineering design
  • 3% program management
  • 4% construction management + 0.5% agency fee + 4% mobilization costs
These overhead rates compound with each other, combining to 53%. The expected all-up cost of a twin-bore Dumbarton tunnel is then about $1.8 billion.  Add to that the expense of removing the old bridge, estimated by Samtrans at $150M, and we reach almost $2 billion.

Why Tunnel?

As we are often reminded on the peninsula, a tunnel puts the trains out of sight and out of mind. In this case, it actually makes sense to build one because it crosses a terrain obstacle, San Francisco Bay. A new tunnel avoids visual and noise impacts, removes the blight of the old bridge, enables higher train speeds without endangering wildlife, and can be made more resilient to sea level rise than a new bridge. A new tunnel is not much more expensive than the options now being contemplated as part of the Samtrans Dumbarton Transportation Corridor Study, where it was summarily and improperly dismissed as too expensive, risky, burdensome and impactful (see Table 6-4). The tunnel option deserves a second and more serious look.

A Dumbarton tunnel could extend under University Ave and Willow Road in Menlo Park, grade separating both for a marginal cost that our model places at $132k per meter of twin tunnel (in 2025 dollars). The Samtrans study estimates each grade separation to cost about $200M (in 2017 dollars), so the two grade separations are worth about a mile of extra twin tunnel if you've already got TBMs in the ground. That's before the grade separations have to be rebuilt to accommodate sea level rise.

A Dumbarton tunnel would provide more cost certainty than a bridge. The last bridge the region built overran its cost estimates by several hundred percent, while the Dumbarton water tunnel was on time and on budget. Tunnel boring is a well-developed technology that is highly automated and doesn't use a lot of expensive construction labor. Some people are working on making it even more automated.

San Francisco to Tracy in 35 minutes
A Dumbarton tunnel could serve as a key component of a new regional rail link between the Bay Area and the Central Valley, putting San Jose much closer to Sacramento, and San Francisco under an hour from Stockton. It could eventually serve as the entry point of high-speed rail into the Bay Area, making faster trips from anywhere in the Bay Area to Sacramento and southern California. The performance simulation at right shows a high speed train passing through Tracy just 35 minutes after departing San Francisco Transbay, traveling along the Altamont SETEC alignment. This would vastly simplify the "blending" of Caltrain and high-speed rail since the latter would enter the peninsula rail corridor at its midpoint, sharing slow tracks for only half the distance of the existing plans and requiring fewer overtake maneuvers.

A new Altamont / Dumbarton high speed regional rail link could replace and combine the fragmented hodge-podge of projects and agencies variously pushing Altamont Commuter Express extensions, Valley Link, Livermore BART, a second BART Transbay Tube, the high-speed rail system, and whatever Cross Bay Transit Partners might come up with for Dumbarton, each of which nibble at different edges of the same basic problem: our regional mobility is inadequate and relentless traffic jams are crushing the souls of hundreds of thousands of people in the I-580, I-680, I-880, US-101 and CA-92 corridors.

The Dumbarton rail corridor needs to be thought of as so much more than a simple bay crossing that relieves traffic for people who work at Facebook. This is a one hundred year piece of infrastructure that can unclog an entire region, and it needs to be engineered for it. A tunnel for $2 billion (in 2025 dollars) is a sound and future-proof investment.

24 January 2019

Palo Alto: Designing in a Vacuum

Palo Alto is continuing the fraught public process of winnowing down the feasible and acceptable options for grade separating the four remaining rail crossings. Having hired an engineering consultant, the city is busily making plans for railroad land that doesn't belong to it and over which it has no jurisdiction.

The fancy renderings from a recent meeting, envisioning a tunnel, a trench, a hybrid embankment, or a viaduct, invariably show expansive new landscaping when construction is finished. This is reflective of the ample railroad land available through most of Palo Alto. Caltrain's land is typically about 100 feet wide, excepting a few short sections of the corridor near Southgate and Peers Park that are just 60 feet wide. South of those narrow spots, there is plenty of room to accommodate four tracks (about 75 feet required) if needed in the future, no matter what the pot-stirring local press may say.

Palo Alto's planning process thus far seems to have missed these important facts:

  1. Caltrain's nascent business plan envisions ambitious expansions of service in the next two decades, growing far beyond the initial goal of electrification. Service planning thus far strongly suggests (pp. 64-67) that new overtake tracks will be needed approximately from south of Peers Park to the Mountain View border. The additional tracks in south Palo Alto, featured in all remaining options (p. 34), would allow express trains to pass local trains.
     
  2. In other cities to the north and south where Caltrain has become directly involved in the planning process, it has levied a requirement that city-generated grade separation designs preserve the future option of adding overtake tracks, expanding the corridor from two to three or four tracks. Two examples:
     
    • Whipple Ave in Redwood City, where the city recently hired Caltrain to lead the planning effort. On page 138 of the October 1st, 2018 city council meeting agenda, a letter from Caltrain states: "... the Project Study Report must include at least one design option that accommodates the potential overtake. In this context, "accommodate" is understood to have the following minimum threshold of meaning: the grade separation design maximizes the preservation and configuration of existing right of way such that overtake tracks could be built later with no or minimal right of way acquisition; the grade separation design does not force future overtake tracks to be built in a way that substantially increases their cost and complexity."
       
    • Rengstorff Ave in Mountain View, where the city recently hired Caltrain to lead the preliminary engineering and environmental clearance effort. On page 105 of the December 2018 JPB board meeting agenda, we read that "the design will consider and accommodate Caltrain / high-speed rail blended system improvements and be designed to allow for up to four tracks."
In practical terms, this adds a new constraint to Palo Alto's grade separation deliberations. We can reasonably infer that Caltrain will require at least the Charleston / Meadow grade separation to be engineered for four tracks, or at least not to preclude four tracks. The sooner this constraint is incorporated into the city's planning process, the less anguish and recrimination there will be in arriving at an acceptable design.

When planning construction on someone else's land, it helps to know what the owner wants.